

Abstract

SMS Spam Detection is one of the most prominent

Machine Learning applications. Using supervised

learning for binary (0/ham, 1/spam) test classification,

two baseline predictors have been trained and used:

Naïve Bayes Algorithm and Perceptron Learning

Algorithm. The more advanced algorithms then proposed

are SVMs (Support Vector Machines) and Neural

Networks.

1. Introduction

SMS (Short Message Service) is one of the most popular

means of communications. With its growing popularity and

the general mass’s dependency on mobile phones, the

problem of receiving spam SMS is a prominent problem.

Spam messages are defined as unwanted text messages

from dodgy firms/individuals aiming to grab attention. The

solution to this is using spam detection systems using

Machine Learning techniques. In this report, two baseline

classifiers are evaluated and their performance is analyzed

followed by two advanced algorithms which aim to give us

better results. The test data set was 20% of the whole data

given and the training data set was 80%. Scikit-learn was

the library mainly used for this module.i

2. Feature Extraction

The biggest challenge in SMS spam detection is

converting the words in these SMS into features for our

classifiers. The feature extraction process is divided into

three steps:ii

2.1. Manual Feature Extraction using characters and

capital letters

First, 18 features are extracted manually. The following

attributes of SMS are used:

i) Capital letters (one letter must be followed by

another capital letter to make it more

efficient)

ii) Exclamation marks (!) (one exclamation mark must

be followed by another exclamation mark)

iii) Question marks (?) (one question mark must be

followed by another question mark)

iv) Currency signs (dollar, euro, Britain pound)

v) Star marks (*)

vi) Percentage marks (%)

Three attributes are extracted per attribute listed above:

i) Total number of attribute occurrences, relative to

the total length of the SMS

ii) Average number of attribute occurrences, relative to

the total length of the SMS

iii) Longest length of attribute occurrences, relative to

the total length of the SMS

2.2. Preprocessing text

In order to extract other features like word count,

preprocessing of data is required. We do three steps in

preprocessing:

i) Using a tokenizer to split the SMS “sentences” into

list of tokens (words) by removing spaces and

punctuation marks. We do not need

punctuation marks anymore as we have

already extracted features related to them.

ii) Using a lemmatizer to change similar forms of the

same word into one word (e.g. go, going,

gone into go). This would help in word count.

iii) Making all words lowercase so that they can be

considered the same (e.g. ORGAN and

organ). We do not need our data to be case

sensitive as we have already extracted

features regarding capital letters.

2.3. Word count feature extraction

As the last step, raw text data is converted into numbers

using CountVectorizer()iii. This creates a

vocabulary/dictionary which includes all words from our

entire data set. It then gives a count of the occurrence of

each word (representing a feature/column) in our dictionary

per SMS (per row).

As our data set has a size of 4459 SMS, not all word

counts in the SMS can be used as features. Using the rule

of thumb:

SMS Spam Detection using Machine Learning (Python)
Mariam Sarfraz

Imperial College London, EEE Department
ms5715@ic.ac.uk

where N is the size of data set and d(vc) is the VC

dimensions. This shows us that at max, 426 (444-18) word

counts can be utilized as features.

The features are reduced to 400 by using 2 parameters in

the CountVectorizer():

i) stop_words: words such as “the”, “or” and “a” do

not contribute much as they do not give out

information, being present in both spam and

ham SMS. Such words are removed using

stop_words. We remove all English stop

words.

ii) min_df: all words that appear in less than the

integer value min_df is assigned to (in our

case 17) are ignored. This parameter helps

get rid of infrequent words which do not give

out much information as they occur less

frequently.

These 400-word count features are then combined with the

features we extracted in step 1 to give us a feature matrix

that will be used for testing.

3. Baseline Classifiers

The baseline classifiers chosen are perceptron learning

algorithm and Naïve Bayes Theorem.

3.1. Loss Function

For both baseline classifiers, a binary error loss function

was implemented using the penalty table below:

 Actual Spam
(1)

Actual Ham
(0)

Predicted Spam
(1)

0 10

Predicted Ham
(0)

1 0

Figure 1

Using this penalty function, the number of errors were

counted. If an actual spam was predicted as ham, the error

count only increased by one. However, if an actual ham

was predicted as spam, the error count increased by 10.

This is because a Ham SMS could contain very useful

information and that we wouldn’t want to classify as spam.

However, if we get a spam SMS in our text folder, we

could simply ignore/delete it. The total error was then given

by:

3.2. Cross-Validation

In all algorithms analyzed in the report, 10-fold cross

validation is used as it is arbitrary and highly

recommended.

3.3. Single Layer Perceptron Learning Algorithm

(PLA)

PLA is a standard baseline algorithm used for binary

classification. It maps the input to the output by calculating

a weight vector. One of the parameters, tol, is kept to its

default value ‘None’ as this implements the pocket

algorithm which is used for linearly inseparable data.

Below are the results obtained by keeping max_iter

(parameter: epochs) as 10, 100 and 1000.

Figure 2

The results show us that the best training error (1.88%) is

obtained using 1000 epochs. Using these optimized

parameters, we get our test/true error to be 26.01%.

3.4. Multinomial Naïve Bayes Algorithm

Naïve Bayes Algorithm is a simple yet highly effective

classifier as it predicts the probability that the input

belongs to a class (in our case, spam or ham) depending on

each of the feature value probabilities. The aspect that

makes this algorithm “naïve” is that it is presumed that the

occurrence of a certain feature is independent of the

occurrence of the other features. It is suitable for high

dimensional training sets. The algorithm is based on Bayes

Theorem:

As our data set is multinomially distributed, we use

Multinomial Naïve Bayes Algorithm.

where x is the feature vector, C(k) is the class, p(ki) is the

probability that event i occurs (in the class).

In multinomial Naïve Bayes, the key parameter is alpha,

which is a smoothing hyperparameter. Optimum value for

alpha is determined using grid search over reasonable

values of alpha. GridSearchCV() goes through an

exhaustive search process over a range of parameter values

given to it to give us the optimal parameter values. The

results for different alpha values are shown below:

Alpha E(in) /% Accuracy

1e-10 23.84 0.963

1e-5 25.63 0.961

1e-3 27.88 0.960

0.01 33.46 0.955

1 35.01 0.954

Figure 3

The results show that for alpha = 1e-10 (Lidstone

smoothing), the performance of the classifier is the best,

giving us the best accuracy and the lowest training error

(23.84%). Using these optimized parameters, the test/true

error obtained is 26.82%.

3.5. Conclusion

Looking at the results, we can conclude that both

baseline classifiers have approximately the same

performance level. In the next section, advanced

algorithms will be selected and evaluated to increase the

accuracy and reduce the true error of our spam detector.

4. Advanced Algorithms

Treating Naïve Bayes Algorithm and Perceptron

Learning Algorithm as our baseline classifiers, we will

now propose two advanced algorithms suitable for SMS

spam detection: Neural Networks (Multi-layer perceptron

learning algorithm) and SVMs (Support Vector Machines).

4.1. Neural Networks

Neural Networks are powerful and highly efficient

learning algorithms. They are a suitable choice for spam

detection as they are used to translate features and create

non-linear, “soft” decision boundaries. They are mainly

used for classification problems. They “soften” the

threshold, followed by the application of the all-general

gradient descent to find an effective solution. Once a

solution is formed, we “harden” the threshold to get our

final solution.

4.1.1 Loss Function

 As the output of the neural network is a “soft threshold”

i.e. the probability value between 0 and 1, the loss function

of our choice will be the Cross-Entropy loss function:

The error increases with the predicted probability going

further away from the actual result/class.

4.1.2 Parameter Selection

 There are four main features in MLP (multi-layer

perceptron classifier).

i) Hidden_Layer_Sizes: this is the number of hidden

layers used in the neural network. Using

GridSearchCV(), a comparison was made

using parameter values 50, 100 and 200. The

optimal value for this parameter was 100

(which is the default value as well).

ii) Activation: is the activation function used for the

hidden layers. We choose “relu” as it does

not face the problem of gradient vanishing

like tanh or sigmoid function.

iii) Solver: is the method used for solving for the

weights. We use “adam” as it is ideal for

large data sets like ours.

iv) Alpha: alpha is the regularization term for our

Neural Network. We use GridSearchCV() to

solve for the optimal alpha value. The optimal

alpha value obtained is: 0.001

4.1.3 Performance Evaluation

Using these parameter values and the cross-entropy loss

function, we obtain the training error as 0.65, accuracy as

0.982 and finally the test/true error as 4.72.

4.2. Support Vector Machines

Support Vector Machines are a suitable advanced

algorithm for spam detection as it is robust and handles

large feature spaces. SVM separates these features in a

very high dimensional space.

4.2.1 Loss Function

 The loss function suitable for SVMs is Hinge Loss

Function.

where t is the actual result (-1, +1) and y is the predicted

result. We can observe that cumulated the hinge loss is an

upper bound for the number of misclassified points. iv

4.2.2 Parameter Selection

i) Choice of Kernel:

We use the Linear SVC for our spam detector as solving

the optimization problem using linear kernel is much

faster. As we have a large number of features, it is not

necessary to map data to a high-dimensional space. Linear

kernel is, hence, good enough for our case. v

ii) Choice of C:

Apart from the choice of kernel, there is one other crucial

factor in parameter selection: C. C is the penalty parameter

of the error term. Using GridSearchCV(), we obtain the

optimal value of C from the set [0.001, 0.01, 0.1, 1, 10] to

be 0.1.

4.2.3 Performance Evaluation

Using the optimal parameter values, we obtain the

following results:

Training error is 2.69, accuracy is 0.979 and test/true

error is 2.87.

4.3. Conclusion

Comparing the results between our advanced algorithm,

the Support Vector Machines have better performance with

only a true error of 2.87 compared to the neural network

error of 4.72.

5. Over-all Conclusion

Looking at the results, we can conclude that the

performance (best to worst) for our algorithms is as

follows:

1. Support Vector Machines using Linear Kernel

2. Neural Networks

3. Perceptron (Pocket) Learning Algorithm

3. Naïve Bayes Theorem

6. Pledge

I, Mariam Sarfraz, pledge that this assignment is

completely my own work, and that I did not take, borrow or

steal work from any other person, and that I did not allow

any other person to use, have, borrow or steal portions of

my work. I understand that if I violate this honesty pledge,

I am subject to disciplinary action pursuant to the

appropriate sections of Imperial College London.

7. References

i http://scikit-learn.org/stable/
ii https://cambridgespark.com/content/tutorials/implementing-

your-own-spam-filter/index.html

iii https://pythonprogramminglanguage.com/bag-of-

words/

iv https://en.wikipedia.org/wiki/Hinge_loss

v http://scikit-

learn.org/stable/tutorial/machine_learning_map/index.html

https://pythonprogramminglanguage.com/bag-of-words/
https://pythonprogramminglanguage.com/bag-of-words/
https://en.wikipedia.org/wiki/Hinge_loss
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

	1. Introduction
	2. Feature Extraction
	2.1. Manual Feature Extraction using characters and capital letters
	2.2. Preprocessing text
	2.3. Word count feature extraction

	3. Baseline Classifiers
	3.1. Loss Function
	3.2. Cross-Validation
	3.3. Single Layer Perceptron Learning Algorithm (PLA)
	3.4. Multinomial Naïve Bayes Algorithm
	3.5. Conclusion

	4. Advanced Algorithms
	4.1. Neural Networks
	4.1.1 Loss Function
	4.1.2 Parameter Selection
	4.1.3 Performance Evaluation

	4.2. Support Vector Machines
	4.2.1 Loss Function
	4.2.2 Parameter Selection
	4.2.3 Performance Evaluation

	4.3. Conclusion

	5. Over-all Conclusion
	6. Pledge
	7. References

