
  

Abstract 

 

SMS Spam Detection is one of the most prominent 

Machine Learning applications. Using supervised 

learning for binary (0/ham, 1/spam) test classification, 

two baseline predictors have been trained and used: 

Naïve Bayes Algorithm and Perceptron Learning 

Algorithm. The more advanced algorithms then proposed 

are SVMs (Support Vector Machines) and Neural 

Networks.  

 

1. Introduction 

SMS (Short Message Service) is one of the most popular 

means of communications. With its growing popularity and 

the general mass’s dependency on mobile phones, the 

problem of receiving spam SMS is a prominent problem. 

Spam messages are defined as unwanted text messages 

from dodgy firms/individuals aiming to grab attention. The 

solution to this is using spam detection systems using 

Machine Learning techniques. In this report, two baseline 

classifiers are evaluated and their performance is analyzed 

followed by two advanced algorithms which aim to give us 

better results. The test data set was 20% of the whole data 

given and the training data set was 80%. Scikit-learn was 

the library mainly used for this module.i 

2. Feature Extraction 

The biggest challenge in SMS spam detection is 

converting the words in these SMS into features for our 

classifiers. The feature extraction process is divided into 

three steps:ii 

 

2.1.  Manual Feature Extraction using characters and 

capital letters 

First, 18 features are extracted manually. The following 

attributes of SMS are used: 

i) Capital letters (one letter must be followed by 

another capital letter to make it more 

efficient) 

ii) Exclamation marks (!) (one exclamation mark must 

be followed by another exclamation mark) 

iii) Question marks (?) (one question mark must be 

followed by another question mark) 

iv) Currency signs (dollar, euro, Britain pound) 

v) Star marks (*) 

vi) Percentage marks (%) 

 

Three attributes are extracted per attribute listed above: 

i) Total number of attribute occurrences, relative to 

the total length of the SMS 

ii) Average number of attribute occurrences, relative to 

the total length of the SMS 

iii)  Longest length of attribute occurrences, relative to 

the total length of the SMS  

 

2.2. Preprocessing text 

 

In order to extract other features like word count, 

preprocessing of data is required. We do three steps in 

preprocessing:  

i) Using a tokenizer to split the SMS “sentences” into 

list of tokens (words) by removing spaces and 

punctuation marks. We do not need 

punctuation marks anymore as we have 

already extracted features related to them.  

ii) Using a lemmatizer to change similar forms of the 

same word into one word (e.g. go, going, 

gone into go). This would help in word count.  

iii)  Making all words lowercase so that they can be 

considered the same (e.g. ORGAN and 

organ). We do not need our data to be case 

sensitive as we have already extracted 

features regarding capital letters.  

 

2.3.  Word count feature extraction  

 

As the last step, raw text data is converted into numbers 

using CountVectorizer()iii. This creates a 

vocabulary/dictionary which includes all words from our 

entire data set. It then gives a count of the occurrence of 

each word (representing a feature/column) in our dictionary 

per SMS (per row).  

 

As our data set has a size of 4459 SMS, not all word 

counts in the SMS can be used as features. Using the rule 

of thumb: 
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where N is the size of data set and d(vc) is the VC 

dimensions. This shows us that at max, 426 (444-18) word 

counts can be utilized as features.  

The features are reduced to 400 by using 2 parameters in 

the CountVectorizer(): 

i) stop_words: words such as “the”, “or” and “a” do 

not contribute much as they do not give out 

information, being present in both spam and 

ham SMS. Such words are removed using 

stop_words. We remove all English stop 

words.  

ii) min_df: all words that appear in less than the 

integer value min_df is assigned to (in our 

case 17) are ignored. This parameter helps 

get rid of infrequent words which do not give 

out much information as they occur less 

frequently.  

These 400-word count features are then combined with the 

features we extracted in step 1 to give us a feature matrix 

that will be used for testing.  

3. Baseline Classifiers 

The baseline classifiers chosen are perceptron learning 

algorithm and Naïve Bayes Theorem. 

3.1. Loss Function 

For both baseline classifiers, a binary error loss function 

was implemented using the penalty table below: 

 

 Actual Spam 
(1) 

Actual Ham 
(0) 

Predicted Spam 
(1) 

0 10 

Predicted Ham 
(0) 

1 0 

Figure 1 

 

Using this penalty function, the number of errors were 

counted. If an actual spam was predicted as ham, the error 

count only increased by one. However, if an actual ham 

was predicted as spam, the error count increased by 10. 

This is because a Ham SMS could contain very useful 

information and that we wouldn’t want to classify as spam. 

However, if we get a spam SMS in our text folder, we 

could simply ignore/delete it. The total error was then given 

by:  

 

 

 

 

3.2. Cross-Validation 

In all algorithms analyzed in the report, 10-fold cross 

validation is used as it is arbitrary and highly 

recommended.  

3.3. Single Layer Perceptron Learning Algorithm 

(PLA) 

PLA is a standard baseline algorithm used for binary 

classification. It maps the input to the output by calculating 

a weight vector. One of the parameters, tol, is kept to its 

default value ‘None’ as this implements the pocket 

algorithm which is used for linearly inseparable data. 

Below are the results obtained by keeping max_iter 

(parameter: epochs) as 10, 100 and 1000.  

 

 
Figure 2 

 

The results show us that the best training error (1.88%) is 

obtained using 1000 epochs. Using these optimized 

parameters, we get our test/true error to be 26.01%. 

3.4. Multinomial Naïve Bayes Algorithm 

Naïve Bayes Algorithm is a simple yet highly effective 

classifier as it predicts the probability that the input 

belongs to a class (in our case, spam or ham) depending on 

each of the feature value probabilities. The aspect that 

makes this algorithm “naïve” is that it is presumed that the 

occurrence of a certain feature is independent of the 

occurrence of the other features. It is suitable for high 

dimensional training sets. The algorithm is based on Bayes 

Theorem: 

 

 
 

As our data set is multinomially distributed, we use 

Multinomial Naïve Bayes Algorithm.  



 

  

 
where x is the feature vector, C(k) is the class, p(ki) is the 

probability that event i occurs (in the class).  

 

In multinomial Naïve Bayes, the key parameter is alpha, 

which is a smoothing hyperparameter. Optimum value for 

alpha is determined using grid search over reasonable 

values of alpha. GridSearchCV() goes through an 

exhaustive search process over a range of parameter values 

given to it to give us the optimal parameter values. The 

results for different alpha values are shown below: 

 

Alpha E(in) /% Accuracy 

1e-10 23.84 0.963 

1e-5 25.63 0.961 

1e-3 27.88 0.960 

0.01 33.46 0.955 

1 35.01 0.954 

Figure 3 

 

The results show that for alpha = 1e-10 (Lidstone 

smoothing), the performance of the classifier is the best, 

giving us the best accuracy and the lowest training error 

(23.84%). Using these optimized parameters, the test/true 

error obtained is 26.82%. 

 

3.5. Conclusion 

Looking at the results, we can conclude that both 

baseline classifiers have approximately the same 

performance level. In the next section, advanced 

algorithms will be selected and evaluated to increase the 

accuracy and reduce the true error of our spam detector.  

4. Advanced Algorithms 

Treating Naïve Bayes Algorithm and Perceptron 

Learning Algorithm as our baseline classifiers, we will 

now propose two advanced algorithms suitable for SMS 

spam detection: Neural Networks (Multi-layer perceptron 

learning algorithm) and SVMs (Support Vector Machines). 

4.1. Neural Networks 

Neural Networks are powerful and highly efficient 

learning algorithms. They are a suitable choice for spam 

detection as they are used to translate features and create 

non-linear, “soft” decision boundaries. They are mainly 

used for classification problems. They “soften” the 

threshold, followed by the application of the all-general 

gradient descent to find an effective solution. Once a 

solution is formed, we “harden” the threshold to get our 

final solution. 

 

4.1.1  Loss Function 

 As the output of the neural network is a “soft threshold” 

i.e. the probability value between 0 and 1, the loss function 

of our choice will be the Cross-Entropy loss function: 

 
 

The error increases with the predicted probability going 

further away from the actual result/class.  

 

4.1.2 Parameter Selection 

 

 There are four main features in MLP (multi-layer 

perceptron classifier). 

i) Hidden_Layer_Sizes: this is the number of hidden 

layers used in the neural network. Using 

GridSearchCV(), a comparison was made 

using parameter values 50, 100 and 200. The 

optimal value for this parameter was 100 

(which is the default value as well). 

ii) Activation: is the activation function used for the 

hidden layers. We choose “relu” as it does 

not face the problem of gradient vanishing 

like tanh or sigmoid function. 

iii)  Solver: is the method used for solving for the 

weights. We use “adam” as it is ideal for 

large data sets like ours.  

iv) Alpha: alpha is the regularization term for our 

Neural Network. We use GridSearchCV() to 

solve for the optimal alpha value. The optimal 

alpha value obtained is: 0.001 

 

4.1.3  Performance Evaluation 

 

Using these parameter values and the cross-entropy loss 

function, we obtain the training error as 0.65, accuracy as 

0.982 and finally the test/true error as 4.72.  

4.2. Support Vector Machines 

Support Vector Machines are a suitable advanced 

algorithm for spam detection as it is robust and handles 

large feature spaces. SVM separates these features in a 

very high dimensional space.  

 

4.2.1  Loss Function 

 The loss function suitable for SVMs is Hinge Loss 

Function.  

 
where t is the actual result (-1, +1) and y is the predicted 



 

  

result. We can observe that cumulated the hinge loss is an 

upper bound for the number of misclassified points. iv 

 

4.2.2 Parameter Selection 

 

i) Choice of Kernel: 

We use the Linear SVC for our spam detector as solving 

the optimization problem using linear kernel is much 

faster. As we have a large number of features, it is not 

necessary to map data to a high-dimensional space. Linear 

kernel is, hence, good enough for our case. v 

ii) Choice of C: 

Apart from the choice of kernel, there is one other crucial 

factor in parameter selection: C. C is the penalty parameter 

of the error term. Using GridSearchCV(), we obtain the 

optimal value of C from the set [0.001, 0.01, 0.1, 1, 10] to 

be 0.1.  

 

4.2.3 Performance Evaluation 

 

Using the optimal parameter values, we obtain the 

following results:  

Training error is 2.69, accuracy is 0.979 and test/true 

error is 2.87. 

 

4.3. Conclusion 

Comparing the results between our advanced algorithm, 

the Support Vector Machines have better performance with 

only a true error of 2.87 compared to the neural network 

error of 4.72.  

 

5. Over-all Conclusion 

Looking at the results, we can conclude that the 

performance (best to worst) for our algorithms is as 

follows: 

1. Support Vector Machines using Linear Kernel 

2. Neural Networks 

3. Perceptron (Pocket) Learning Algorithm 

3. Naïve Bayes Theorem 

 

6. Pledge 

I, Mariam Sarfraz, pledge that this assignment is 

completely my own work, and that I did not take, borrow or 

steal work from any other person, and that I did not allow 

any other person to use, have, borrow or steal portions of 

my work. I understand that if I violate this honesty pledge, 

I am subject to disciplinary action pursuant to the 

appropriate sections of Imperial College London. 
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